27 research outputs found

    Theoretical model for the electrospinning nanoporous materials process

    Get PDF
    AbstractThis paper deals with modeling the electrospinning nanoporous materials process. The presented theoretical models offer an in-depth insight into the physical understanding of many complex phenomena and might be very useful at shedding light on the contributing factors. Many basic properties and some special properties (such as the numbers and sizes of the pores) are tunable by adjusting electrospinning parameters such as voltage, flow rate, and others. With the increase of voltage and the decrease of flow rate, ever-increasing numbers and ever-decreasing sizes of the nanoporous microspheres have appeared. Electrospun nanoporous materials which can be regarded as thousands of Helmholtz Resonators forming together will become a kind of excellent sound absorption material

    THERMAL OSCILLATION ARISING IN A HEAT SHOCK OF A POROUS HIERARCHY AND ITS APPLICATION

    Get PDF
    A building or a bridge might collapse after a heat shock. This paper shows that a porous hierarchy of a coating can effectively prevent a building or a bridge from such damage. A cocoon’s geometrical structure is studied and its resistance to the heat shock is revealed by a thermal oscillator. The theoretical model reveals an extremely low frequency of the thermal oscillator, which is very important for cocoons’ biomechanism, especially in the heat insulation function. At the same time, it shows that the cocoons have the best thickness to protect the pupa from the environment. In addition, surface temperature measurement of hierarchical mulberry leaves is performed. This work provides new insights into biomimetic design of the protective building and coatings

    EFFECT OF TEMPERATURE ON NANOFIBER'S MORPHOLOGY IN ELECTROSPINNING

    No full text

    Effect on honey concentration on morphology of bubble-electrospun polyvinyl alcohol/honey fibers

    No full text
    In this study, polyvinyl alcohol fibers containing honey were produced by bubble electrospinning. The surface morphologies of polyvinyl alcohol fibers were studied by a scanning electron microscopy. The results showed the mean diameter of fibers increased as the ratio of honey increased

    Preparation of PLGA/MWCNT Composite Nanofibers by Airflow Bubble-Spinning and Their Characterization

    No full text
    Poly(lactic-co-glycolic acid) (PLGA)/multi-walled carbon nanotube (MWCNT) composite nanofibers have been successfully fabricated via airflow bubble-spinning. In this work, a systematic study of the effects of solution concentration, relative humidity (RH), and composition on the morphology of PLGA nanofibers is reported. By comparing the distribution of fiber diameter, we found that the spinning effect was the best when the temperature was kept at 25 °C, the collecting distance 18 cm, the concentration 8 wt %, and the relative humidity 65%. MWCNTs used as added nanoparticles were incorporated into the PLGA nanofibers. The volatile solvents were used to achieve the purpose of producing nanoporous fibers. Besides, the rheological properties of solutions were studied and the PLGA or PLGA/MWCNT composite nanofibers with a nanoporous structure were also completely characterized using scanning electron microscope (SEM), a thermogravimetric analyzer(TGA), X-ray diffraction(XRD) and Fourier-transform infrared (FTIR) spectroscopy. In addition, we compared the mechanical properties of the fibers. It was found that the addition of MWCNTs significantly enhanced the tensile strength and elasticity of composite nanofibers without compromising the nanoporous morphology. The results showed that the breaking strength of the composite fiber bundle was three times as strong as the pure one, and the elongation at the break was twice as great. This work provided a novel technique successfully not only to get rid of the potential safety hazards caused by unexpected static but also prepare oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration

    Effects of Soil Microbes on Forest Recovery to Climax Community through the Regulation of Nitrogen Cycling

    No full text
    Microbes, as important regulators of ecosystem processes, play essential roles in ecosystem recovery after disturbances. However, it is not clear how soil microbial communities and functions change and affect forest recovery after clear-cutting. Here, we used metagenome sequencing to systematically analyse the differences in soil microbial community composition, functions, and nitrogen (N) cycling pathways between primary Korean pine forests (PF) and secondary broad-leaved forests (SF) formed after clear-cutting. Our results showed that the dominant phyla of the two forest types were consistent, but the relative abundance of some phyla was significantly different. Meanwhile, at the genus level, the fold-changes of rare genera were larger than the dominant and common genera. The genes related to microbial core metabolic functions, virulence factors, stress response, and defence were significantly enriched in SF. Additionally, based on the relative abundance of functional genes, a schema was proposed to analyse the differences in the whole N cycling processes between the two forest types. In PF, the stronger ammoniation and dissimilatory nitrate reduction (DNRA) and the weaker nitrification provided a genetic explanation for PF dominated by ammonium (NH4+) rather than nitrate (NO3−). In SF, the weaker DNRA, the stronger nitrification and denitrification, the higher soil available phosphorus (AP), and the lower nitrogen to phosphorus ratio (N/P) comprehensively suggested that SF was faced with a greater degree of N limitation. These results offer insights into the potential relationship between soil microbes and forest recovery, and aid in implementing proper forestry management

    Facile preparation of α-Fe2O3 nanobulk via bubble electrospinning and thermal treatment

    No full text
    In this work, α-Fe2O3 nanobulk with high aspect ratio were successfully prepared via a facile bubble electrospinning technique using polyvinylidene fluoride and iron chloride hexahydrate (FeCl3•6H2O) as α-Fe2O3 precursor followed by annealing in air at 600°C. The products were characterized with field emission scanning electron microscope, Fourier transform infrared, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The results showed that α-Fe2O3 nanobulk has a hierarchical heterostructure which has an extremely broad application prospect in many areas
    corecore